Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour.
نویسندگان
چکیده
The imprinted expression of the IGF2 and H19 genes is controlled by the Imprinting Centre 1 (IC1) at chromosome 11p15.5. This is a methylation-sensitive chromatin insulator that works by binding the zinc-finger protein CTCF in a parent-specific manner. Microdeletions abolishing some of the CTCF target sites (CTSs) of IC1 have been associated with the Beckwith-Wiedemann syndrome (BWS). However, the link between these mutations and the molecular and clinical phenotypes was debated. We have identified two novel families with IC1 deletions, in which individuals with the clinical features of the BWS are present in multiple generations. By analysing the methylation pattern at the IGF2-H19 locus together with the clinical phenotypes in the individuals with maternal and those with paternal transmission of five different deletions, we demonstrate that maternal transmission of 1.4-1.8 kb deletions in the IC1 region co-segregates with the hypermethylation of the residual CTSs and BWS phenotype with complete penetrance, whereas normal phenotype is observed upon paternal transmission. Although gene expression could not be assayed in all cases, the methylation detected at the IGF2 DMR2 and H19 promoter suggests that IC1 hypermethylation is consistently associated with biallelic activation of IGF2 and biallelic silencing of H19. Comparison of these deletions with a 2.2 kb one previously reported by another group indicates that the spacing of the CTSs on the deleted allele is critical for the gain of the abnormal methylation and penetrance of the clinical phenotype. Furthermore, we observe that the hypermethylation resulting from the deletions is always mosaic, suggesting that the epigenetic defect at the IGF2-H19 locus is established post-zygotically and may cause body asymmetry and heterogeneity of the clinical phenotype. Finally, the IC1 microdeletions are associated with a high incidence of Wilms' tumour, making their molecular diagnosis particularly important for genetic counselling and tumour surveillance at follow-up.
منابع مشابه
Beckwith–Wiedemann syndrome and Wilms’ tumour
Patients with rare overgrowth disorders, such as Beckwith–Wiedemann syndrome and Simpson–Golabi– Behmel syndrome, are predisposed to embryonal tumours, including Wilms’ tumour of the kidney. Therefore, these disorders offer a link between hyperplastic growth and cancer. Genetic lesions at chromosome 11p15 have been associated with Beckwith–Wiedemann syndrome and Wilms’ tumour for several years ...
متن کاملDistinct Methylation Changes at the IGF2-H19 Locus in Congenital Growth Disorders and Cancer
BACKGROUND Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derive...
متن کاملThe French Wilms' tumour study: no clear evidence for cancer prone families.
Wilms' tumour of the kidney is known to occur in Beckwith-Wiedemann syndrome. It has also been described in four cancer prone families displaying Li-Fraumeni syndrome but it is not usually considered to be part of this syndrome. In order to detect particular familial cancer aggregations associated with this tumour, we studied the cancer incidence and mortality among relatives of the 501 Wilms' ...
متن کاملDifferent mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms' tumour.
The parent of origin-dependent expression of the IGF2 and H19 genes is controlled by the imprinting centre 1 (IC1) consisting in a methylation-sensitive chromatin insulator. Deletions removing part of IC1 have been found in patients affected by the overgrowth- and tumour-associated Beckwith-Wiedemann syndrome (BWS). These mutations result in the hypermethylation of the remaining IC1 region, los...
متن کاملThe significance of molecular studies in the long-term follow-up of children with beckwith- wiedemann syndrome.
Beckwith-Wiedemann syndrome (BWS) is a congenital disorder of imprinting caused by epimutations and mutations affecting two imprinted loci on chromosome 11p15. Its clinical features are heterogeneous, including macrosomia, macroglossia, hemihyperplasia, abdominal wall defects, neonatal hypoglycemia, and increased risk of embryonal tumors such as Wilms tumor, adrenocortical carcinoma, hepatoblas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2007